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The full resistive MHD equations are linearized around an equilibrium with cylindrical 
symmetry and solved numerically as an initial-value problem. The semi-discretization using 
cubic and quadratic finite elements for the spatial discretization and a fully implicit time 
advance yields very accurate results even for small values of the resistivity. In the application 
different phenomena such as waves, resistive instabilities, and overstable modes are 
addressed. ci;‘ 1986 Academic Press, Inc 

1. INTRODUCTION 

A suitable description of the plasma behaviour is given by the macroscopic model 
(MHD). The existence of an MHD equilibrium is considered a necessary condition 
for successful operation of a tokamak. A large variety of instabilities can abruptly 
terminate the discharges or deteriorate their conlinement. We regard resistive 
instabilities as the most important of the dissipative perturbations, since they cause 
the plasma to break away from the magnetic field. The ratio of the plasma pressure 
and the magnetic field energy, the plasma beta fi= 2p/B2, should be as large as 
possible for economic reasons. The numerical search for stable equilibria, especially 
for optimized configurations, as well as for details of the instabilities is therefore 
very important for analyzing experiments and designing new devices. Complete 
simulation of the plasma evolution requires solution of the full time-dependent, 
nonlinear MHD equations. Owing to the quite different length and time scales 
involved this is a very complex numerical task. 

Here we address the time evolution of linearized perturbations around an 
equilibrium state. Our numerical method is based on semi-discretization, where dif- 
ferent approximations are used for the spatial and temporal discretization. In par- 
ticular, the spatial discretization is chosen for good uniform numerical 
approximation of the entire spectrum of normal modes, a property that is not met 
by conventional schemes. It has been established that the linearized problem can be 
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numerically solved with high accuracy. The influence of various quantities can thus 
be analyzed in detail; moreover, comparison with analytical theory [l, 21 is 
possible, which leads to fruitful interaction. The most common method of solving 
the linearized compressible, resistive MHD equations is the initial-value for- 
mulation. Hence this method has been used by many authors. We refer to the 
excellent review articles [3, 4, 51, which contain a detailed list of references. 
Explicit as well as implicit difference schemes have been employed for the time 
advance; see, for example, Ref. [6, 71. 

In ideal MHD spectral codes using a sophisticated flux coordinate system and a 
finite-element discretization for the displacement vector, such as ERATO [8] and 
PEST [9], and also used by Kerner in Ref. [lo], yield very accurate results, 
especially near the point of marginal stability. The formulation as an eigenvalue 
problem should therefore also be obvious for the set of resistive equations. In this 
respect the complex eigenvalues are evaluated by the matrix-shooting method of 
Freidberg and Hewett [ 111 or by the complex eigenvalue solver of Kerner, Ler- 
binger, and Steuerwald [12] using inverse vector iteration. Applications by Ryu 
and Grimm [13] utilizing the shooting method and by Kerner et al. [14, 15, 161 
based on inverse vector iteration are so far all restricted to equilibria with cylin- 
drical symmetry. A discretization using finite differences for the spatial variable can 
be made accurate to at least second order but requires a uniform mesh. To resolve 
resistive modes accurately, an extremely tine mesh around singular surfaces is 
necessary. The finite-element method allows arbitrary grid spacing, so that the mesh 
points can be appropriately accumulated around singular surfaces. This advantage 
easily makes up for the computational work needed to compute the matrix 
elements, which occur in the weak form. The Galerkin method in conjunction with 
cubic and quadratic finite elements was employed in the normal-mode code of Ref. 
[ 141. A good discretization which approximates well the entire spectrum of normal 
modes was achieved there by representing the normal components of the velocity 
and the perturbed magnetic field by cubic Hermite elements, and the remaining 
components by quadratic finite elements. A pollution-free discretization (in the 
sense of Ref. [ 17, 181) was thus obtained which yields very accurate results for the 
entire spectrum even for values of the resistivity as small as q z lo-“, this was 
demonstrated in the applications of Ref. [ 12, 14, 15, 163. Such a pollution-free dis- 
cretization is extremely valuable at the marginal point. The entire spectrum can 
obviously be resolved only by a normal-mode code. An initial-value code always 
maps out the most unstable mode of the system. Therefore, it is unlikely that with 
the initial-value formulation a good discretization for the point of marginal stability 
has been obtained. Usually a finite-difference scheme requires much finer spatial 
resolution than a finite-element method with higher-order finite elements. The com- 
plex eigenvalues are obtained by means of a general eigenvalue problem &x = 19x 
with non-Hermitian matrix &. The following complication then arises: If the 
matrix dimension is so large that iterative methods, such as inverse vector iteration, 
which preserve the band structure, become necessary, there is no guarantee against 
one or several eigenvalues being missed somewhere in the complex plane. Sylvester’s 
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theorem (see Ref. [ 193) of the Hermitian case valid for ideal MHD, which provides 
this information, does not apply to the dissipative system. To obtain such infor- 
mation, the Nyquist technique or a similar Cauchy integral becomes necessary, 
which is, however, rather involved. If we are concerned about missing the most 
unstable mode of a given configuration, we have to turn to the initial-value for- 
mulation. But, naturally, the good spatial discretization is kept. This concept of a 
finite-element discretization for the spatial dependence and the usual differencing in 
time is called semi-discretization.’ This scheme perfectly complements the men- 
tioned complex eigenvalue code. It should therefore be considered not as an exten- 
sion of the normal-mode code but basically as a specific initial-value code. 

The finite-element semi-discretization of the compressible, resistive MHD 
equations is the issue of this paper. For the time integration a fully implicit scheme 
is employed, which is unconditionally stable and thus allows arbitrarily large time- 
steps, this being extremely useful in the case of very small growth rates. All kinds of 
waves, such as fast and slow magnetoacoustic waves and Alfven waves, can be 
accurately represented. If the time-step is too large for a specific wave such as the 
fast magnetosonic wave, this mode is not well represented but is damped out. The 
numerical scheme, however, still works accurately in representing slower modes 
such as Alfven and sound waves. Current-driven tearing modes and pressure-driven 
resistive interchange modes are computed for different values of the resistivity. This 
demonstrates that our scheme indeed resolves resistive instabilities accurately and 
efficiently. Then overstable modes are analyzed, the growth rate and the oscillation 
frequency being resolved well for both large and small frequencies. The paper is 
organized as follows: The physical model, which is the common compressible, 
resistive MHD model, is described in Section 2. Details of the numerical scheme 
based on a finite-element semi-discretization are presented in Section 3, and its 
CPU times and storage requirements are discussed in Section 4. Section 5 contains 
the results: the capability of the code is demonstrated by the resolution of the 
various types of waves, by the treatment of resistive instabilities and by the 
application to overstable modes. Finally, Section 6 contains the discussion and the 
conclusions. 

2. PHYSICAL MODEL 

The plasma is described in terms of single-fluid theory. The resistive MHD 
equations read in normalized, dimensionless form 

r Mechanics and Mathematical Methods, Computational Methods in Mechanics Vol. 1, Com- 
putational Methods For Transient Analysis, edited by T. Belytschko and Thomas J. R. Hughes (North- 
Holland, Amsterdam/New York/Oxford, 1983), Chap. 1 by T. Belytschko, “An Overview of 
Semidiscretisation and Time Integration Methods Procedures”, Chap. 2 by Thomas J. R. Hughes 
“Analysis of Transient Algorithms with Particular Reference to Stability Behavior.” 
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equation of motion 

,($+vVv)= -VP+(VxB)xB, 

Maxwell-Ohm 

adiabatic law 

ap 
at= -yPV*v-v-VP, 

(1) 

(2) 

(3) 

Maxwell 

V.B=O. (4) 

Here p denotes the density, v the velocity, B the magnetic field, P the pressure and 
r] the resistivity; y is the ratio of the specific heats. Note that the assumption of 
incompressibility, V * v = 0, is not made. The adiabatic law is adopted for the 
equation of state since the dissipation, which is proportional to q, is considered to 
be small. The incompressible equations of motion accurately describe the plasma 
behaviour if the pressure variations are small compared with the mean ther- 
modynamic pressure. Since the resistive modes rapidly oscillate, the compressible 
set of equations is appropriate. The fast and slow magnetoacoustic waves are 
retained. These equations are now linearized around a static equilibrium charac- 
terized by a/at = 0 and v0 = 0. The equilibrium is then determined by the equation 

VP,=(VxB,)xB,. (5) 

In straight geometry static, ideal equilibria can be interpreted as resistive 
equilibria if Vx ~(VX B,) = 0, with the consequence that q0j0 = E, = const. In 
toroidal geometry a resistive equilibrium is only possible with flow, i.e., v. # 0. This 
flow, however, is proportional to Y) and hence very small. Here we take the simplest 
approach of a constant resistivity lo instead of a constant E,. This simplification 
does not constitute any restriction on unstable modes, since the resistivity 
decouples the fluid from the magnetic field in localized regions where the pertur- 
bation matches the field. But also. the results for stable modes are only 
unsignificantly changed by using constant resistivity. This model thus gives the 
basic feature of resistive modes, since we are interested in phenomena which scale 
as ?13’5 or q113 (and as Y) 1’2 like the resistive AlfvCn modes). For a circular cylinder , 
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the equilibrium quantities only have an r-dependence. With the usual cylindrical 
coordinates r, 0, z the equilibrium is determined by the equation 

ap, -= -fB,~(rB,)-B,~B,. 
ar 

(6) 

With two profiles given, Eq. (6) can be solved to give the remaining one. 
The following separation ansatz is suitable for the perturbed quantities: 

f(r, 8, z; t) =f(r; t) exp(imO+ i&z). (7a) 

Introducing an eiganvalue 

f(r; f) =f(r) expW) 0) 

then defines the growth rate as the real part of 1, i.e., I, = Re(A). With k = 2x/L 
defining a periodicity length, a tokamak with large aspect ratio is simulated, n 
corresponding to the toroidal mode number; m is the poloidal mode number. In 
ideal MHD il is either real or purely imaginary, which leads to unstable or purely 
oscillating waves. With resistivity included, the frequency can become complex and 
hence overstable modes can occur. The equations for the perturbed quantities v, p, 
and b read 

PO av 
-= -Vp+(VxB,)xb+(Vxb)xB,, at 

ap 
at= -yP,V.v-v*VP,, 

(8) 

$=Vx (vxB,)-Vx (f7x b). (10) 

The divergence condition, Eq. (4), for the perturbed field, V * b = 0, is used to 
eliminate b, provided m # 0. The perturbed resistivity is set to zero, thus eliminating 
the rippling mode. 

Finally, we discuss the boundary conditions. It is assumed that the plasma is 
surrounded by a perfectly conducting wall, which implies the following conditions 
at the wall, 

u,(a) = 0, (114 

b,(a) = 0. (lib) 
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For finite resistivity in the plasma the Maxwell equations require that the tangential 
component of the electric field vanish at the wall. This implies 

= 0. r=(I (llc) 

On the axis r = 0 all the quantities are regular. 

3. NUMERICAL METHOD 

The system of linearized resistive MHD equations, Eqs. (8t( lo), presents a set of 
partial differential equations in the variables r and t. In semi-discretization methods 
these partial differential equations in space and time are first discretized in space 
yielding a system of ordinary differential equations in time. The semi-discretization 
in space can be accomplished by finite-element or finite-difference methods. Our 
formulation differs from the usual finite-difference schemes in that it imposes dif- 
ferent requirements on the spatial and temporal discretization. The spatial dis- 
cretization is tailored for a best (i.e., pollution-free) uniform approximation of the 
entire numerical spectrum to the exact spectrum. This was achieved by the special 
finite-element representation used in the normal-mode code of Kerner et al. [14]. 
The restriction on the temporal discretization is relatively mild. The method should 
be flexible to map out well all the different modes of the system with reasonable 
timesteps, which is easily obtained by an implicit method. The definition semi-dis- 
cretization adopted by the authors (following footnote 1) underlines the different 
philosophy for the numerical approximation with respect to space and time. 
Approximation solutions are constructed by using the finite-element representation 
prompted by the complex eigenvalue code. The state vector u with six components 
is introduced : 

U 
tT = to,, ve, v,, P, br, b,). 

We then change the dependent variables to 

U’ = (vl = TV,., v2 = iv,, v3 = irv,, p’ = rp, 6, = irb,, 6, = rb,). (12) 

For simplicity p’ is named p again. To reduce the order of derivatives and to obtain 
the weak form, we take the inner product of Eqs. (8)-(10) with the weighting 
function v, which has to be sufficiently smooth, and integrate over the plasma 
volume. In the Galerkin method used here the adjoint function v satisfies the same 
boundary conditions as u. The operator in Eqs. (8k( 10) is represented by matrices 
92 and Y with spatial dependence only, where in Y only the diagonal elements are 
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nonzero and 93 contains differential operators and equilibrium quantities. The set of 
equations then reads 

The components of u are approximated by a finite linear combination of local 
expansion functions or shape functions: 

uk= r ff,k(t)h,k(r), k = 1, 2,..., 6 (14) 
j=l 

with time dependence for the coefficients. Higher-order elements are used, namely 
cubic Hermite elements for the radial velocity and field components vi and b, and 
quadratic finite elements for u2, u3, p, and b,. This introduces two orthogonal 
shape functions per interval, raising the order of the unknowns to 2N, where N - 1 
denotes the number of radial intervals. With this choice the transverse divergence 

can be made to vanish exactly in every interval, and the divergence of b as well. It 
has been established that this scheme yields a polution-free approximation for the 
discretized spectrum to the true eigenvalue spectrum. Condition (15), which is only 
a constraint for the numerical method, is the same as for the ideal system as shown 
in Ref. [ 141. The proof that condition (15) is sufficient for uniform convergence to 
the exact spectrum in the ideal system has been given by Rappaz [18]. In the 
resistive case linear elements for vi and bl are not acceptable for a good dis- 
cretization because of the higher-order derivatives in Ohm’s law, and hence higher- 
order elements are required. The stated cubic and quadratic expansion functions 
were introduced in Ref. [ 143. The vector U(T) is a weak solution if for any function 
V(Y) of the admissible Sobolev space satisfying the boundary conditions the scalar 
product satisfies 

au (Wu,v)= Y;i;'V . ( ) 
In the Galerkin method, which is applied here, the basis functions h/k(r) are used in 
the weak form, yielding 
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where 

A, = s R&(r) dr, (17) R 

B, = [ S&(r) dr, (18) R 

are matrices of length d= 12N- 2, when the boundary conditions are taken into 
account. The integration is performed over the plasma volume 52. The matrix B is 
symmetric and positive-definite but d is non-Hermitian. Equation (16) presents a 
system of linear ordinary differential equations. The simplest integration scheme for 
the first-order system (16) is the explicit Euler scheme 

a n+l=an+Atgn, (19) 

where n denotes the time-step, i.e., t = to + n At. This yields the integration formula 

a “+‘=(dtW’d+l)a”. (20) 

This method is only conditionalIy stable (see footnote 1, Ref. [22]). Numerical 
stability limits the time step to 

At< 
2 

- = A&tat,, A (21) 
max 

where ;1,,, is the maximum eigenvalue of the system da = ILftTa. Since the largest 
eigenvalue is given by the fast magnetosonic wave owing to the shortest radial scale 
Ar and hence tends to infinity if Ar goes to zero, the Courant-Friedrichs-Lewy 
(CFL) condition (21) is not acceptable. This CFL condition can be improved by 
adopting an implicit scheme defined by 

a n+l=,fl+At,$Z+l, (22) 

which is unconditionally stable. We adopt the generalized trapezoidal method 

a “+‘=a”+At(l-o)9”+AtoB”+‘, (23) 

with parameter w, which reduces to the explicit formula (19) for o = 0 and to the 
implicit formula (22) for w = 1. For w = 0.5 it is the standard trapezoidal rule. The 
algorithm for the time advance then assumes the form 

da “+‘:={-&?+~At&}aa”+‘= da”:= --(B+(l--)At&}a”. (24) 

This time integration is conditionally stable for o < 0.5 with At < 2/( 1 - 20) A,,, 
and unconditionally stable for w > 0.5. The scheme is first-order accurate, except for 
o =0.5, where it is second order. Thus it is desirable to set 02 0.5. The matrix 
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manipulations necessary for an implicit scheme usually present a serious problem 
both for the coding and for the efficiency of the algorithm. Sometimes the explicit 
scheme is preferred because of its simplicity, in spite of the CFL condition. For the 
linearized problem addressed here the matrix computation does not pose a severe 
problem, since the band structure of the matrices .d and .&I is utilized in the 
algorithm. The matrices have block-diagonal structure with a band width of h = 23, 
resulting in an overall band width of 47. The operations necessary for solution of 
the linear system (24) are performed with routines from the LINPACK library. The 

1 ioitialise :,A;, a01 

FIG. 1. Flow chart of the initial-value code based on semi-discretization with only one matrix in 
core. 
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elements outside the blocks but inside the band width are filled with zeros to be 
consistent with the required band-storage mode. The length of the matrices 
d = 12 * N- 2 is usually large, namely d > 1000. The iterative system (24) is solved 
by applying 9% decomposition of 2. The algorithm is presented in the flow chart 
in Fig. 1. The temporal evolution of the initial vector a, is monitored by the kinetic 
energy K to display the growth rate and by a specific component of a to display 
oscillations. Usually, the first component is chosen: 

K(t)=jdrlu12=aTWa+ Jai’, (254 

K”= (anI*, Pb) 
KI” = a:, 1 <i,<d. (25~) 

By using the 9% factorization the linear system (24) is solved very efficiently. The 
vector a is a real vector. The formulation as an eigenproblem (introduced by the 
ansatz (7b)) requires a complex vector a to represent imaginary and complex eigen- 
values 1, and hence the algorithm for inverse vector iteration requires a complex 
shifted matrix d’ = & - A,@. In comparison with the eigenvalue formulation this 
scheme is more economic with respect to storage. On the other hand, inverse vector 
iteration usually requires less iterations than the initial-value method. 

4. I~~PLEMENTATI~N 

The implementation of the algorithm makes use of routines from the LINPACK 
library [21]. The real matrices d and $9 are evaluated and stored in the usual 
band-matrix storage mode, so that the zero elements outside the bands do not 
occur at all. Newt, the matrices d and ~8 are computed according to Eq. (24) with 
the time-step dt and the implicitness parameter o fixed. To make full use of the fast 
execution on the CRAY-1 vector computer, the LINPACK routines SGBFA for 
factorization and SGBSL for successive solution of linear systems are used. The 
flow chart of the algorithm, presented in Fig. 1, displays the steps in the execution. 
The vector a,, is usually initialized by random numbers. Special choices prompted 
by analytical solutions or previous numerical results are admissible and can speed 
up the convergence. However, this is only done for convenience. The minimum 
amount of storage required includes the matrices d and g and the decomposition 
of ct4’= 9% together with the vectors ai and bi. In addition, a workspace for the 
pivoting in the linear system has to be given. These storage requirements can easily 
be improved by keeping only the minimum data necessary for the algorithm in the 
fast memory and by storing data on disk. The storage-improved algorithm then 
works as follows: 

(1) Compute matrix d and store & on disk, compute matrix W and perform 
the shift during computation & = -9J - (1 - o) Atd and store 4 on disk B. 
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(2) Read in matrix & and perform the shift during computation 
d-=w Atd-93’. 

(3) Factor d = LHL and store 2 and % on disk A. 
(4) Compute new vectors and keep ai and bi in the fast memory. 
(5) Read in L?, %, or 4 separately, if needed. 

This optimized version is a simple extension of the original one. Only one real 
matrix in band-matrix storage mode is required in the fast memory at any step 
together with additional workspace for the factorization with the dimension of the 
upper band width. The storage available at IPP, 7.3 x lo6 bytes, which corresponds 
to 730,000 real words, allows 600,000 matrix elements together with the necessary 
vectors. Cases with up to 313 radial grid points resulting in a dimension d of the 
linear system of d = 3742 can be handled without storage on disk; this has been 
proved as sufficient for all the applications so far. A new solver utilizing the block- 
diagonal structure of the matrices and allowing a much larger block size is being , 
tested and will be reported elsewhere. This new solver allows treatment of 2D 
equilibria. 

Next we estimate the CPU time necessary for the algorithm. The number of 
operations to factor a band matrix with band width b and dimension d is 

and the number of operations to solve the linear system 

N,xd.b 

For NT iterations there are then 

N,=N,+NT.N,zd.b(b+NT) (26) 

operations required. Usually, the number of time-steps is larger than 50 and, 
because b is fixed b = 47, the CPU time is approximately linear to both the number 
of time-steps NT and radial intervals N, 

t( CPU) = aN(a’ + NT) z UN. NT, (27) 

with a = 3.9 x 1O-4 and u’ = 69. A typical case with 50 radial intervals and 500 time- 
steps then needs - 12.7 s on the CRAY-1. The additional vector and matrix 
manipulations, initially and at each time-step, together with the monitoring of K(t) 
and KZ(t) slightly enhance the estimate (27). 

5. RESULTS 

In this section three types of applications are presented, namely wave 
propagation, resistive current and pressure-driven instabilities, and overstable 
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modes. The semi-discretization in conjunction with the implicit time advance 
enables such phenomena to be accurately and efficiently resolved. 

5.1. Waves 

The ideal MHD spectrum contains three different branches, namely the fast 
magnetoacoustic waves and the AlfvCn and slow modes. The Alfvtn and sound 
mode branches usually form a continuum. With resistivity point eigenvalues such as 
fast modes or ideal instabilities experience only a small change, mostly damping 
proportional to q, but the continua disappear and the resistive Alfvtn modes are 
strongly damped (see Refs. [ 13, 15, 161). Those eigenvalues lie on specific curves in 
the complex I-plane which become independent of resistivity for vanishing q. If 

KI(t) a KI(t) b 

I 

O- 0 

-I- -l 

I. 
0 0 20 40 60t 50 100 150 200 

KI(t) c 
I 

FIG. 2. Time evolution of a specific component of a fast magnetoacoustic wave superimposed on an 
AlfvCn wave (KI, Eq. (2%). The rapid oscillations are due to the fast compressional wave with frequency 
Im(i) = 3.06 and with damping Re(l) = -4.7 x lo-” and the slow decrease of KI(t) is due to the Alfven 
wave with Im(,I) = 6.53 x lo-* and with Re(l) = -1.36 x 10-3. (a) o= 0.52 and At =0.075, (b) w = 0.50 
and At = 0.25, (c) w = 0.52 and At = 2.0. 

581/66/2-T 
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initialized accordingly, the numerical scheme allows such waves to be analyzed. The 
equilibrium is the same as for the stability analysis below and is defined as 

B,(r) = 1.0, 

B,(r) ==$ (2r - r3), 

p(r)=? 
‘( 

(1-r2)-~(1--r4)+~(1-r6) ) 
> 

(28) 

PO(r) = 1.0, 

where the constant j, is connected with the value of the safety factor on the axis 
q(0) and the wave number k i,, = 2k/q(O). Figure 2 displays the time evolution of a 
fast mode superimposed on an AlfvCn mode. The parameter o is given two values 
o = 0.52 and 0.5. For a small time-step At = 0.075 the fast mode is properly resolved 
with the correct frequency Im(1) = 3.06 and with approximately the correct damp- 
ing Re(l) = -6.85 x 10e6. Since the damping of the Alfvtn mode is almost a factor 
of 1000 larger than that of the fast mode the correct damping Re(,l.) = -4.7 x 10e6 
is obtained only with smaller time-steps or with the Alfven wave switched off. The 
global decline of the amplitudes in Fig. 2a is due to the Alfven wave, which is not 
followed for a long enough time. For larger time-steps At = 0.25 and At = 2.0 the 
Alfvtn wave is better resolved; the corresponding frequency Im(1) = 6.53 . 10d2 and 
damping Re(L) = 1.36 x lo-’ have the correct values. For o greater than 0.5 the 
fast modes are damped out but the numerical method is still stable and hence the 
Alfvtn waves are properly resolved until the time step is eventually too large. For 
o = 0.5 the waves persist numerically undamped. These results confirm that the 
time-step is given by the accuracy necessary to resolve a specific mode, but not by 
stability. It is found that the time-step should be approximately equal to or smaller 
than 0.1 times the frequency, or the growth rate of the mode of interest. 

5.2. Resistive Instabilities 

The results so far have indicated that we are free to adjust the time-step for 
efficient resolution of any mode of the system. Next, current and pressure-driven 
resistive instabilities are analyzed. The results for a realistic tokamak-like 
equilibrium with peaked current density and constant toroidal fields is fairly well 
understood. The class of profiles 

r2 ’ 
jz(r)=h 1-g 9 ( > 

B,= 1, 

p=l 



RESISTIVE MHD EQUATIONS 345 

yields for the ratio of the safety factor on surface ~~~~~~~~ = a and on axis q(a)/q(O) = 
v + 1. The constant j, is adjusted to vary q(0). We set v = 1 and hence q(a)/q(O) = 2. 
Then the profiles used assume the form 

R p=z 
( 

(l-r2)-~(l-yd)+~(l-r6) ) 
) 

where j,, is connected with q(O), 

2k 

J”=qo. 

It is known that the m = 1 tearing mode is unstable if the q = 1 surface is inside the 
plasma. This instability can be avoided if q > 1.0 over the whole plasma radius. The 
m = 2 tearing mode is then the most dangerous instability. As expected for this 
monotonically decreasing pressure (see Ref. [22]), the unstable modes have purely 
exponential growth. The growth rate of the most unstable mode is plotted versus 
q(u) in Fig. 3a. If the wall is placed directly at the surface a = rwal’, then the m = 2 
tearing mode is unstable for 2.20 < q(u) < 4.0. These results are obtained by study- 
ing the time evolution of a starting vector given by random initialization. The time- 
step is chosen as At = 400 for the strong instabilities near nq(u) = 3 and as 
At = 1000 for weaker instabilities around nq(u) = 2.1. For nq(u) 6 2.3 the instability 
changes from a current-driven into a pressure-driven mode. This transition is dis- 
played in Fig. 3b. The growth rates are extracted from the time dependence of the 
kinetic energy and from that of a specific component, introduced as K(t) and KZ(t) 

6*10-' 

0.0 q(a) 

6+10 -' 

0.0 s(a) 

FIG. 3. (a) Growth rate of the most unstable mode for a tokmak-like current profile (Eq. (29)) with 
the wall directly at the plasma surface surface versus the safety factor on the surface for TV = 10e5 and 
n = 1, m = -2, k = 0.1, and w = 0.52. (b) Growth rate for the same case in an enlarged scale. 
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./lo41 

FIG. 4. Time evolution of the kinetic energy K(t) of a pressure driven instability for the equilibrium 
of Fig. 3 with q(a) = 2.2, o = 0.52, and At = 400. 

in Eq. (25). Figure 4 shows the result for nq(a) = 2.2. After a few initial oscillations a 
purely exponential growth for K(t) is found. Note that only 50 to 100 time-steps are 
necessary to resolve such instabilities. This also holds for the scaling of a pressure- 
driven instability with resistivity. The smallest growth rate I, cz lop6 for q = low9 is 
computed with a time step At = 2 * 105. The expected dependence Re(lZ) N q1’3 is 
found, as shown in Fig. 5. The eigenfunction displayed in Fig. 6 has a sharp 
gradient at the singular surface, which in this case is located at r = 0.95 and is hence 
close to the wall. The perturbed pressure is significant for this instability in contrast 
to the purely current-driven tearing mode. To analyze these resistive instabilities 
thoroughly, the numerical accuracy has to be sufficiently high. This implies a fine 
spatial resolution around the singular surface. For a uniform radial grid the number 
of radial intervals has to be large to provide several points inside the resistive layer. 
Figure 7 displays the convergence study performed with a uniform mesh for the 
case of nq(a) = 2.2, i.e., rS =0.95. It is clearly seen that for a coarse grid such as 
N= 20 or 40 the results are quite inaccurate. Furthermore, the growth rates 
oscillate with increasing number of intervals. This indicates that the location of grid 
points relative to the singular surface r = rS is more important than the number of 
points itself. Only for N > 60 a reasonable convergence behaviour is evident. The 
dependence of Re(l) on l/N is then quartic up to N= 90, where saturation is 
reached. If there is suitable mesh accumulation around the singular surface, con- 

FIG. 5. Growth rate of the pressure driven instability for the tokamak-like equilibrium, Eq. (29), 
with nq(a) = 2.1 versus resistivity for n = 1, m = -2, and k = 0.1. 
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FIG. 6. Eigenfunction for the pressure driven instability for the equilibrium of Fig. 3 with q(u) = 2.2 
and I = 10m5. 
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FIG. 7. Convergence study for the pressure driven instability for the tokamak-like equihbrmm, 
Eq. (29), with nq(a) = 2.2 (r, = 0.95), n= 1, W= -2, k=O.l, and q= 10m6, the mesh is uniform, 
w = 0.52, AI = 400 (a) in a quadratic scale for N > 20, (b) in a quartic scale for N > 50. 

verged results are obtained with as few as N N 40 points. Mesh accumulation was 
therefore built into the code. Then with a hundred radial mesh points a local 
resolution of Ar/a = 1O-3 around r = rS can easily be generated. All results concern- 
ing instabilities presented in the paper are therefore computed by means of a non- 
uniform spatial grid and their convergence is checked by successive mesh 
refinement. 

5.3. Overstable Modes 

The linearized resistive MHD operator is non-selfadjoint, which leads to complex 
eigenvalues. The resistive fast magnetoacoustic and AlfvCn waves experience both 
oscillatory behaviour and damping, as was demonstrated in the first application. To 
obtain an overstable mode in cylindrical geometry, the values for A’, the jump of 
the logarithmic derivative of the perturbed magnetic field at the resonant surface, 
and for Ds = -(2q*/Bzq’*)(dp/dr) have to be chosen accordingly. Overstable modes 
can occur only if D, < 0, which implies a locally increasing pressure, i.e., dp/dr > 0, 
and if d’ exceeds a critical value, A’ > A:., as was pointed out in Ref. [22]. The class 
of tokamak-like equilibria defined by 

B,(r) = A &-1+(&z)‘)‘-‘. 

1 r 
40) = C( j--p 

p(r)=? c12 ‘“-‘(&I), 

(30) 

is suited to studying overstable modes (see Ref. [ 131). The plasma extends up to 
the wall located at r = rwal’ = 2.0 For c1= 1 we have a force-free configuration with 
zero pressure. For CI < 1 finite pressure is introduced with dp/dr > 0. Since the 
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FIG. 8. Overstable modes for the tokamak-like equilibrium, Eq. (30) with varying pressure gradient. 
The values of a which labels dp/dr are given. The parameters are B, = 9.0, n = 2 x 10m5, n = 1, M = -2 
and k = 0.2. Re(A) denotes the growth rate and Im(J) the oscillation frequency. 

pressure is rising and nonzero at the wall, this equilibrium is somewhat unrealistic. 
But the pressure is 
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the force-free equilibrium (M = 1) the only instability is the unstable tearing mode, If 
CI gets smaller values, c( < 1, this mode becomes slightly stabilized, but a second 
unstable mode emerges from the origin. This second unstable mode is not detected 
by the initial-value code. With increasing pressure gradient, i.e., with decreasing 
values for a, the growth rate of the most unstable mode decreases and that of the 
second most unstable mode increases until both modes merge and an overstable 
mode evolves. This happens for CL < 0.868. If CC is further decreased the growth rate 
of this overstable mode gets smaller. The oscillatory frequency, however, strongly 
increases. For a < 0.31 the mode becomes stable with still finite oscillatory 
behaviour. The time evolution of the kinetic energy for a random initial vector 
shows no oscillatory behaviour for 0.868 Go! d 1, as is seen from Fig. 9a. However, 
a small change to o! = 0.867 (Fig. 9b) indicates an oscillation, which becomes more 
pronounced for smaller values of a Fig. 9c. These plots allow the growth rate to be 
extracted with sufficient accuracy. The frequency of the oscillations, however, can 
be better extracted from the time evolution of a specific vector component KZ(t). To 
improve the resolution, we multiply KZ(t) by the factor emLRf and thus prevent the 
amplitude from growing. As displayed in Fig. 10, we can then easily distinguish 
between purely growing modes with LY = 1 to o! = 0.868 (Fig. lOa,b) and oscillatory 
modes M-C 0.868 (Fig. fOc,d). 

0.6 

0.4 

0.2 

- 0.0 I I I , I I t/10 4I 
0.0 I .o 2.0 3.0 4.0 

KIM c Klltl d 
’ ’ 4 

FIG. 10. Time evolution of a specific component of the eigenfunction H(f), modified by the factor 
e-“~,, for the case of Fig. 9; (a) a= 1.0, Im(l)=O, (b) a = 0.868, Im(A) = 0, (c) CI = 0.867, 
Im(A) = 1.96. 10e4, (d) a = 0.60, Im(A) = 4.58. 10m3. 
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FIG. 11. Eigenfunctions of a purely growing instability for u = 0.868 in Eq. (30). The singular surface 
at r = rr = 0.34 is indicated. 
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FIG. 12. Eigenfunctions of an overstable mode for a = 0.6 in Eq. (30). The singular surface at 
r = rs = 0.34 is indicated. 
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The exact value for the factor AR is not important here. Any approximate value 
will do. The modified quantity KZ( t) badly represents the initial part of the tem- 
poral evolution; but the distinction between purely growing behaviour, shown in 
Fig. 10a and b, and oscillatory behaviour, shown in Fig. 1Oc and d, is then 
extremely clear. Both the growth rate and the oscillation frequency can be deter- 
mined with high accuracy. Relatively few time-steps are sufficient, i.e., dt = 20 and 
NT= 2000 for 0: = 0.6. If the constant a, which labels the pressure gradient, is 
decreased beyond values of 0.6, 01 < 0.6, the accurate determination of the growth 
rate becomes more difficult. The frequency is still extracted; however, the time-step 
has to be substantially decreased. At CI =0.5 the ratio of the growth rate and 
frequency becomes small IRe(A)l/lIm(J)l - 10-3/10-2 zz IO-‘. For reasonably 
accurate evaluation of the growth rate of such an overstable mode the time-step 
was set to At = 1, and many time-steps were necessary, NT= 20,000. The simulation 
of these instabilities becomes quite costly, since the CPU time rises by a factor of 
ten compared with the previous cases. 

The difference between purely growing instabilities and overstable modes is now 
discussed. Figures 11 and 12 display the eigenfunctions for a purely growing mode 
LY = 0.868 and an overstable mode CI = 0.6. The first mode has the usual pattern of a 
tearing mode but here it has finite pressure. Note that the plasma extends from 
r=O to rEpa”- - 2.0. The singular surface is located at r = rS = 0.34. It is evident 
that the outer ideal part of the solution is not pronounced for r > 0.5 except for the 
radial perturbed field. The resolution in Figs. 11 and 12 is therefore increased by a 
cutoff for the radius at u >0.7. 

While the radial components of the velocity and magnetic field remain similar for 
both cases, the overstable mode has an additional structure in the other com- 
ponents. It is evident that the gradients directly at the singular surface r = rS become 
steeper and additional oscillations occur in the resistive layer. Especially, the pertur- 
bed pressure becomes more pronounced, which eventually leads to complete 
stabilization. 

It was pointed out above that for such tokamak-like configurations the accuracy 
of overstable modes very strongly depends in a subtle manner on the equilibrium 
parameters. For slightly different parameters the effect is not there anymore. The 
detailed study of the modes presented therefore emphasizes the accuracy and 
reliability of the numerical scheme. In contrast to such a difficult case the overstable 
modes can very easily be traced for a reversed field pinch configuration, as presen- 
ted by Ryu and Grimm [ 131. 

6. DISCUSSION 

For understanding present fusion orientated experiments and for designing new 
devices numerical simulation is indispensable. The plasma behaviour can be 
understood in the context of nonlinear, resistive MHD theory. While the com- 
putation of equilibria and the linear ideal MHD stability analysis can be accurately 
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and efficiently solved, the long-time nonlinear simulation still presents a very hard 
problem. The corresponding initial-value codes have to resolve quite different tem- 
poral and spatial scales and easily exceed the computational resources. Completely 
implicit schemes together with appropriately moving coordinates appear necessary. 
These, however, are tremendously difficult to implement. Sophisticated and efficient 
methods are developed first in a linearized version, where plenty of test case exist 
both numerically and analytically. Good discretization can then be employed in the 
nonlinear codes. 

The numerical method presented uses a different philosophy for the spatial and 
temporal discretization. The spatial discretization has to yield a pollution-free 
approximation for the entire spectrum of normal modes, this being obtained by a 
special finite-element representation. The requirement for the temporal dis- 
cretization is simply given by stability and efficiency afforded by an implicit scheme. 
The resulting code differs substantially from all initial-value codes published. In the 
semi-discretization method presented the virtues of a finite-element normal-mode 
code and a fully implicit scheme are combined. The resistive layer is appropriately 
resolved with as few as fifty radial intervals, and large time-steps can be used, which 
allow one to extract the instabilities with fifty time-steps. This culminates in very 
accurate results which are very efficienctly computed. More than a hundred time- 
steps are needed just to determine the growth rate or the oscillatory frequency 
within error bars of less than one percent. Fast and slow magnetosonic and Alfven 
waves can be simuated for finite as well as zero resistivity. The usual current and 
pressure-driven resistive instabilities can easily be resolved, and overstable modes 
characterized by a very subtle dependence on equilibrium parameters are suc- 
cessfully treated. With the code presented, which is suited to monitoring linearized 
perturbations for cylindrical equilibria, obviously only the first step in the desired 
simulation of the temporal evolution of toroidal plasmas has been mastered. 
However, the semi-discretization used closes the gap between normal-mode and 
initial-value methods. The merits of the two schemes complement each other 
perfectly. 

The next step in such a program consists in treating toroidal equilibria. This 
makes it necessary to introduce appropriate flux coordinates. This is the most 

obvious extension of the method presented. 
Initial-value codes are made nonlinear with relative ease, since the distinction 

between equilibrium and perturbation is then discarded. The actual values of all 
quantities are updated at each time-step. However, magnetic islands develop, which 
makes the concept of adopted coordinates questionable. The introduction of higher- 
order two-dimensional finite elements thus appears to be desirable. 
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